

Biofertilizer Potential of Food Waste Anaerobic Digestion on Small Farms

Ryan Graunke

UF- School of Natural Resources and the Environment reg1214@ufl.edu

Adviser: Dr. Ann C. Wilkie

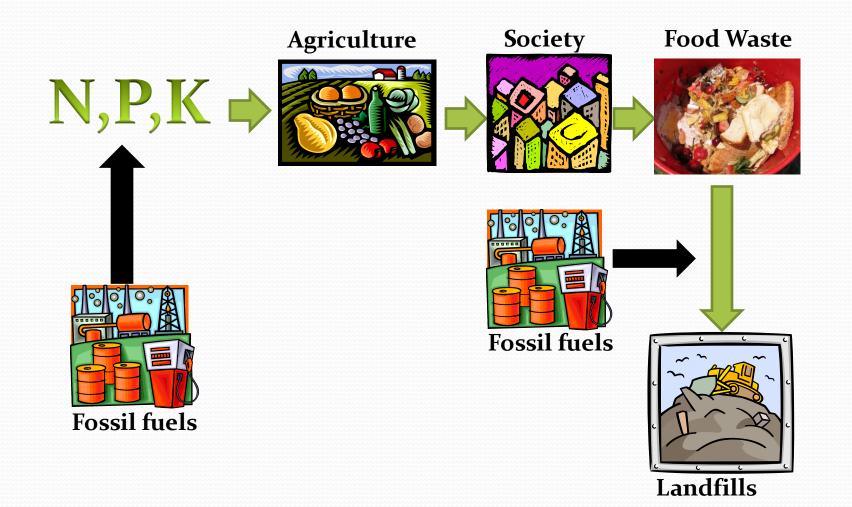
Soil and Water Science Department University of Florida – IFAS acwilkie@ufl.edu http://biogas.ifas.ufl.edu

2010 Joint Meeting of the Florida State Horticultural Society and the Soil and Crop Science Society of Florida June 6 – 8, 2010

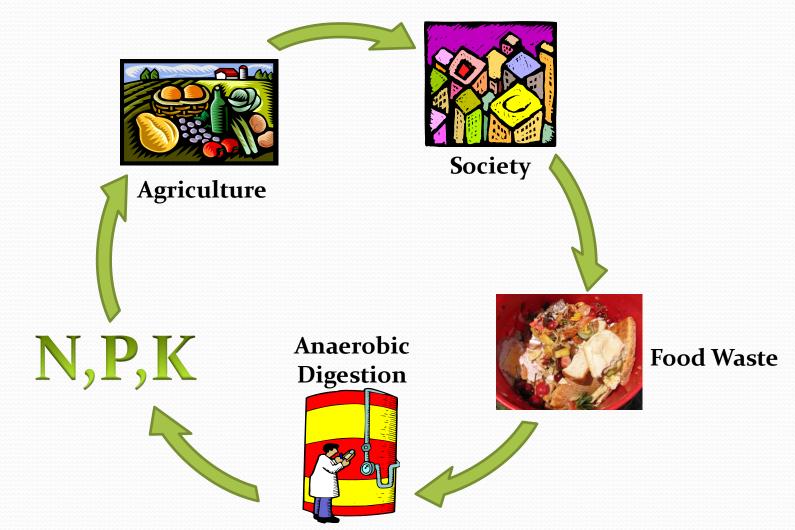
Agriculture and food waste dilemma

- Modern agriculture is dependent on fossil-fuel derived nutrients
- Nutrients are embodied in the crop
- Wasted food removes these nutrients from production and requires further fossil fuels to handle
- Organic fertilizers expensive for small farmers

Current food waste disposal


2008 Collection Data

- US: 31.8 million tons (EPA 2008)
- Florida: 1.7 million tons (FDEP 2009)
- Alachua County: 16,378 tons (FDEP 2009)


Current nutrient pathway

One solution: Anaerobic digestion

- AD is the microbial degradation of organic material under anaerobic conditions
- Produces biogas as an energy source
- Nutrients remain in effluent as source of "biofertilizer"

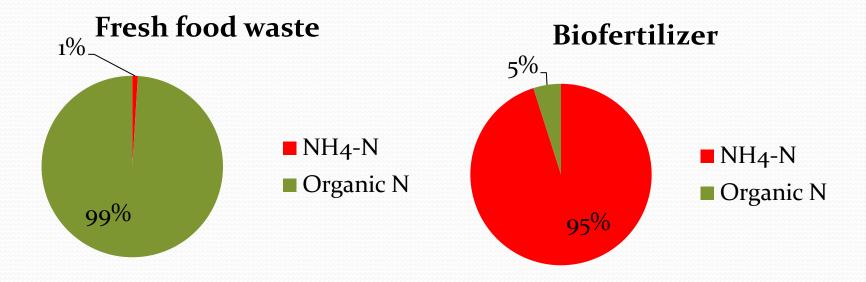
Closed cycle of food waste digestion

Methodology

- Food waste collected from local schools and University of Florida dining hall
- Acid digestion for Total Kjeldahl Nitrogen (TKN) and Total Phosphorus (TP)
- Ammonia measured by ammonia-selective electrode method (Orion Model 95-12)

Nutrient content of food waste

	<u>TKN*</u>	<u>TP*</u>
Cafeteria 1	2.324	0.285
Cafeteria 2	2.557	0.494
Dining Hall Plate		
Scraps	2.342	0.314
Dining Hall		
Kitchen Waste	2.481	0.351
<u>Average</u>	2.426	0.361


*As %DMB

Nutrients from food waste

US: 513.8 million lbs. N/year 76.0 millions lbs. P/year
Florida: 27.5 million lbs. N/year 4 million lbs. P/year
Alachua County: 265,000 lbs. N/year 39,000 lbs. P/year

Nitrogen form

- Organic nutrients are mineralized during digestion process
- Organically-derived replacement for synthetic chemical fertilizers

Advantages of biofertilizer over composting

- Nutrients converted to plant-available form
- Can be injected into existing fertigation systems
- Avoids need for spreaders
- Can be diluted to required concentrations
- Ideal for small farms implementing organic agriculture
- Nutrients made available for urban agriculture

Integration with composting

- Biofertilizer can be incorporated into existing composting systems
- Low C:N ratio of biofertilizer improves biodegradability of high carbon material (e.g. woody waste, paper)
- Helps return carbon to soil

Conclusions

- Biofertilizer keeps nutrients within the productive cycle
- Food waste digestion is a cost-effective way of extracting nutrients and energy from wastes
- Promotes organic and sustainable agriculture

Ryan Graunke UF- School of Natural Resources and the Environment reg1214@ufl.edu

Adviser: Dr. Ann C. Wilkie

Soil and Water Science Department University of Florida – IFAS acwilkie@ufl.edu http://biogas.ifas.ufl.edu

2010 Joint Meeting of the Florida State Horticultural Society and the Soil and Crop Science Society of Florida June 6 – 8, 2010

